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An Inductive Proof of Hex Uniqueness

Samuel Clowes Huneke

Abstract. A short, inductive proof is presented of the fact that a Hex board cannot be colored
such that winning conditions are satisfied for both players.

It is well known that the game of Hex, independently invented by Piet Hein and John
Nash, always has a winner. In it, two players, Black and White, attempt to connect
opposite sides—East and West or North and South—of a parallelogram tiled with
hexagons by coloring tiles with their respective colors (see Figure 1). We call these
sides for the respective players necessary edges. Similar to this result is the intuitively
obvious fact that the board cannot be colored such that there are two winners. In 1979,
David Gale mentioned a proof of this by “induction on the size of the board,” but did
not present it [4, p. 820]. In fact, no such inductive proof has, to our knowledge, ever
been published.

Figure 1. Two examples of 5 x 5 Hex boards. Black has won on the left, and White on the right.

We therefore present our own proof of Hex Uniqueness, inspired by David Berman’s
inductive proof of the fact that Hex always has a winner (the “Hex Theorem”) [2].

Theorem 1 (Hex Uniqueness Theorem). It is impossible for any Hex Board to be
colored in such a way as to satisfy winning conditions for more than one player.

Proof. 1t is easily demonstrable that Hex Uniqueness holds for any 2 x m, n x 2, and
smaller-dimensional boards.

We therefore assume it true for all i x j boards, withi <n and j <m,i =n
and j <m,ori < n and j = m. Further, imagine an n x m board (H (n, m)) colored
such that both Black and White have won. Each player therefore has a winning path
connecting opposite sides of the board. More specifically, each player has a minimal
path, which we define as a winning path M contained in a given winning path such that
M contains precisely one hexagon adjacent to each necessary edge; these hexagons in
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turn are each adjacent to precisely one other hexagon on M, and all other hexagons
contained in M border precisely two other component hexagons. We leave it to the
reader to certify that such a minimal path is indeed contained in any winning path.

First, consider Black. Because he has a path from East to West, we can remove the
nth column from the board and Black will retain a winning path. However, by our
above assumption, there can be only one winner on this new n — 1 x m board. Hence,
White’s minimal path on H (rn, m) must contain a hexagon in the nth column. We
follow the same argument to show that White’s minimal path must contain a hexagon
in the first column. Hence, on the n — 2 x m board created by removing the first and
last columns, White retains a path P connecting East and West. Note that none of the
hexagons contained in P may be in the first or final rows; were one to be contained
therein, then that hexagon, bordering a necessary edge, would be adjacent to two other
hexagons on the minimal path, contradicting our definition above.

Consider White’s position and remove the first row of H (n, m). Because White re-
tains a winning path on the new n x m — 1 board, Black cannot win on it, meaning
that Black’s original minimal path must contain a hexagon in the first row. Similarly,
Black’s minimal path must contain a hexagon in the mth row. Thus, by the same ar-
gument as above, on the n x m — 2 board created by removing the first and last rows,
Black has a path connecting North and South, no hexagon of which can be contained
in the first or final columns.

We now remove the first column, the first row, the nth column, and the mth row to
create an n — 2 x m — 2 board. Note that White has a path connecting East and West
and Black a path connecting North and South. Imagine that all black tiles are white and
all white tiles black. Then, winning conditions would be satisfied for both players on
this n — 2 x m — 2 Hex board, contradicting our assumption for smaller-dimensional
boards.

Hence, no coloring exists for any Hex board that satisfies winning conditions for
more than one player. ]

Additional proofs of Hex Uniqueness, many of which remain unpublished, rely
on the non-planarity of Ks, the Jordan Curve Theorem, or the Four Color Theorem
[4, 5, 7]. Moreover, both John Pierce and Anatole Beck et al. presented proofs of Hex
Uniqueness in 1961 and 1969, respectively, as part of their broader proofs of the Hex
Theorem [1, 8]; however, neither successfully proves Hex Uniqueness.! On the other
hand, Ryan B. Hayward and Jack van Rijswijck prove Hex Uniqueness via the game
of Y [6, p. 2518]. Their paper, however, only provides the sketch of a proof, the details
of which can be found in [3]. We believe that our proof, using a different approach,
has the benefit of simplicity.
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Direct Proof of the Uncountability of the Transcendental Numbers
We usually prove that the set of the real transcendental numbers R \ A is un-
countable indirectly by proving that the set of the algebraic numbers A is count-

able. Here, we present a direct proof that R \ A is uncountable.

Theorem. The set R\ A is uncountable.
Proof. The function f: [0, +00) — R\ A defined by

m+xifr+x¢A
m—xifr+xeA

fx) =

is: (1) well-defined, because if 1 +x € A, then w — x ¢ A, otherwise

(r4+x)+ (@@ —x)
T = 5 €

A

which is false; (2) injective, because if f(x) = f(y), then x = |f(x) — 7| =
| f(y) — 7| = y. (The function f is inspired by the folklore theorem “7w + e ¢ A
or r —e ¢ A”, and its proof “otherwise 7 = “’”’# € A which is false”.)
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