Linear algebra over rings

Test your intuition: is the following true or false?

Assertion 1: If A is a square matrix over a commutative ring R, the rows of A are linearly independent over R if and only if the columns of A are linearly independent over R.

(All rings in this post will be nonzero commutative rings with identity.)

And how about the following generalization?

Assertion 2: If A is an m \times n matrix over a commutative ring R, the row rank of A (the maximum number of R-linearly independent rows) equals the column rank of A (the maximum number of R-linearly independent columns).

If you want to know the answers, read on…

Continue reading