# Whitney Encounters of the Second Kind

I’m speaking tomorrow in the AMS Current Events Bulletin about the work of Adiprasito, Huh, and Katz on the Rota-Welsh conjecture and Hodge theory for matroids.   See this previous post for an introduction to their work.  My write-up for the Current Events Bulletin is included in this booklet.

Here’s an excerpt from the last section of my slides which I may or may not have time to discuss in tomorrow’s talk.  It concerns this recent paper of June Huh and Botong Wang.  (Note added: As anticipated I did not have time to cover this material!  Here are the slides themselves: ceb_talk)

# p-adic Numbers and Dissections of Squares into Triangles

My thesis advisor Robert Coleman passed away two years ago today (see this remembrance on my blog).  One of the things I learned from Robert is that p-adic numbers have many unexpected applications (see, for example, this blog post).  Today I want to share one of my favorite surprising applications of p-adic numbers, to a simple problem in Euclidean geometry. Continue reading

# Matroids over Hyperfields, Part II

In Part I of this post, we defined hyperrings and hyperfields, gave some key examples, and introduced matroids over (doubly distributive) hyperfields in terms of Grassman-Plücker functions.  If $E=\{ 1,\ldots,m \}$ is a finite set and $K$ is a field, we saw that a $K$-matroid on $E$ is the same thing as a linear subspace of $K^m$, and if ${\mathbb K}$ is the Krasner hyperfield then a ${\mathbb K}$-matroid on $E$ is the same thing as a matroid in the usual sense.  Matroids over the hyperfield ${\mathbb S}$ of signs are the same thing as oriented matroids, and matroids over the tropical hyperfield ${\mathbb T}$ are the same thing as valuated matroids.  In this post we will give some “cryptomorphic” axiomatizations of matroids over hyperfields, discuss duality theory, and then discuss the category of hyperrings in a bit more detail. Continue reading

# Matroids over Hyperfields, Part I

In this post and its sequel, I’d like to explain a new perspective on matroid theory which was introduced in this recent preprint which I wrote with Nathan Bowler.  The main observation is that by working with algebraic structures called hyperfields, in which addition is allowed to be multi-valued, linear subspaces, matroids, valuated matroids, and oriented matroids become special cases of a single general concept.  In the process of explaining this observation, I also hope to advertise how natural hyperfields are, for example in the context of tropical geometry.

Hyperstructures

The notion of an algebraic structure in which addition is allowed to be multi-valued goes back to Frédéric Marty, who introduced hypergroups in 1934.  Later on, in the mid-1950’s, Marc Krasner developed the theory of hyperrings and hyperfields in the context of approximating non-Archimedean fields, and in the 1990’s Murray Marshall explored connections to the theory of real spectra and spaces of orderings.  For the most part, however, the theory of hyperstructures was largely ignored by the mathematical community at large until Connes and Consani started advocating its potential utility in connection with $F_1$-geometry and the Riemann hypothesis.  There now seems to be a reappraisal of sorts going on within the math community of the “bias” against multi-valued operations.  Continue reading

# Hodge Theory in Combinatorics

From L to R: Karim Adiprasito, June Huh, Eric Katz

In January 2016, my colleague Josephine Yu and I are organizing a workshop called Hodge Theory in Combinatorics. The goal of the workshop is to present the recent proof of a 50-year-old conjecture of Rota by Karim Adiprasito, June Huh, and Eric Katz. In this post, I want to explain what the conjecture says and give a brief outline of its marvelous proof. I will follow rather closely this paper by Adiprasito-Huh-Katz (henceforth referred to as [AHK]) as well as these slides from a talk by June Huh. Continue reading

# A Celebration of Independence

Yesterday marked the second anniversary of my blog, and today is the 239th birthday of the U.S. In celebration of Independence Day, I want to explain what matroids are. Matroids were invented by Hassler Whitney (and independently by Takeo Nakasawa) to abstract the notion of linear independence from vector spaces to a much more general setting that includes acyclicity in graphs. Other pioneering early work on matroids was done by Garrett Birkhoff and Saunders MacLane. Matroid theory is a rich subject about which we will only scratch the surface here. In particular, there are many different (“cryptomorphic“) ways to present the matroid axioms which all turn out to be (non-obviously) equivalent to one another. We will focus on just a couple of ways of looking at matroids, emphasizing their connections to tropical geometry. Continue reading

# The Mathematics of Marriage

It’s been a while since my last blog post — one reason being that I recently got married.  In honor of that occasion, and my return to math blogging, here is a post on Hall’s Marriage Theorem.

Consider the following game of solitaire: you deal a deck of cards into 13 piles of 4 cards each, and your goal is to select one card from each pile so that no value (Ace through King) is repeated.  It is a beautiful mathematical fact that this can always been done, no matter how the cards were originally dealt!

We will deduce this from a more general result due to Philip Hall commonly known as Hall’s Marriage Theorem.  Suppose you are given finite sets $A_1, A_2,\ldots, A_n$ and you wish to find distinct elements $x_1 \in A_1,\ldots, x_n \in A_n$.  (In our solitaire example, take $A_j$ to be the values of the cards in the $j^{\rm th}$ pile.)  Such a collection is called a transversal or SDR (system of distinct representatives).  Under what conditions is this possible?  Well, for a transversal to exist it is necessary that for each subset $J \subset \{ 1,\ldots, n \}$, the set $A_J:= \bigcup_{j \in J} A_j$ contains at least $\#J$ elements.  Hall’s theorem asserts that these conditions are also sufficient. Continue reading