Georg Cantor

In this post I’d like to illustrate how one can use **infinite games** to prove theorems about the real numbers. I’ll begin with a game-theoretic proof that the set of real numbers is uncountable, following the exposition in this paper of mine. This will lead us somewhat unexpectedly into the realm of descriptive set theory, where we will discuss how games are used in cutting-edge explorations of the Axiom of Choice, the Continuum Hypothesis, and the foundations of second-order arithmetic. In a sequel post I will discuss how infinite games can be used to study Diophantine approximation, with applications to complex dynamics.

**Countable versus uncountable infinities**

When my daughter was 5 years old, she asked me if there is just one infinity. I proudly kissed her on the forehead and told her what an excellent question that was. I told her no, infinity comes in many different flavors. I pretty much left it at that, but since she’s 10 now, here are some more details for her. (The reader familiar with the basics of set theory can move on to the next section.) Continue reading →

### Like this:

Like Loading...