I’m teaching Graduate Algebra this semester, and I wanted to record here the proof I gave in class of the (existence part of the) structure theorem for finitely generated modules over a PID. It’s a standard argument, based on the existence of the Smith Normal Form for a matrix with entries in a PID, but it’s surprisingly hard to find a concise and accessible reference.
We assume familiarity with basic definitions in the theory of modules over a (commutative) ring. Our goal is to prove the following:
Continue readingTheorem: Let
be a principal ideal domain and let
be a finitely generated
-module. Then
is isomorphic to a direct sum of cyclic
-modules. More precisely, there are a non-negative integer
(called the rank of
) and elements
(called the invariant factors of
) such that
for all
and
.